<u>Course Title:</u> Mathematics for Bioinformatics Course Code: BI-802

Course Objectives:

After completing this course:

- □ Students will be able to apply the core concepts of biology and mathematics to understand mechanistic models of biological systems (PEO 3).
- Students will be able to developed computational applications/tools related to bioinformatics (PEO 5).

Course Outcomes:

- □ Students will be able to apply the core concepts of biology and mathematics to understand mechanistic models of biological systems
- Students will be able to developed computational applications/tools related to bioinformatics

Course Contents

- □ Linear Models of Structures Population
 - Matrix Algebra
 - Projection Matrices
 - Eigen Vector and Eigen Values
- Dynamic Modeling with Difference Equations
 - The Malthusian Model
 - Variations on Logistic Model
 - Discrete and Continuous Models
- □ Nonlinear Models of Interactions
 - A Simple Predator-Prey Model
 - Equilibria of Multi-population Models
 - Positive and Negative Interactions
 - Linearization and Stability
- Modeling Molecular Evolution
 - Background on DNA
 - Matrix Models of Base Substitution
 - Phylogenetic Distances
- □ Infectious Disease Modeling
 - Elementary Epidemic Models
 - Threshold Values and Critical Parameters
 - Multiple Populations and Differentiated Infectivity
- Curve Fitting and Biological Modeling

Recommended / Reference Books:

- Elizabeth S. Allman, John A. Rhodes. Mathematical Models in Biology: An Introduction, Cambridge University Press, 2003
- □ Matthew He, Sergey Petoukhov, Mathematics of Bioinformatics Theory, Practice, and Applications, John Wiley & Sons, 2011
- □ Strang, Gilbert. Introduction to Linear Algebra. 4th ed. Wellesley, MA: Wellesley-Cambridge Press, February 2009.